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Traces in braided categories
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Abstract

With any even Hecke symmetryR (that is a Hecke type solution of the Yang–Baxter equation)
we associate a quasitensor category. We formulate a condition onR implying that the constructed
category is rigid and its commutativity isomorphismsRU,V are natural in the sense of[20]. We
show that this condition leads to rescaling the initial Hecke symmetry. We suggest a new way of
introducing traces as properly normalized categorical morphisms End(V ) → K and deduce the
corresponding normalization from categorical dimensions.
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1. Introduction

The main purpose of this paper is to introduce some braided categories arising from
“nonquasiclassical” Hecke symmetries constructed in[10] and to suggest a way of defining
categorical traces

tr = trV : End(V ) → K, V ∈ Ob(C) (1.1)

in a somewhat elementary way without using any ribbon element (see below). Hereafter
Ob(C) stands for the set of objects of the categoryC andK stands for the basic field, always
C or R.

Let us precise from the very beginning that by braided categories we mean monoidal
tensor or quasitensor ones whose objects are vector spaces with the usual tensor product
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and whose natural associativity isomorphisms are identical (for the terminology, cf., e.g.,
[3,20]). Thus, the structure of such a category is principally determined by commutativity
isomorphisms

RU,V : U ⊗ V → V ⊗ U, U, V ∈ Ob(C). (1.2)

These isomorphisms are assumed to satisfy the so-called Yang–Baxter (YB) equation. They
play the role of the usual flip which transposes the factors. We call the isomorphisms(1.2)
YB operator, braiding, or quantumR-matrix.

Moreover, we assume them to be natural in the sense of[20]. This means that for any
two categorical morphismsf : U → U ′ andg : V → V ′ one has:

(g ⊗ f ) ◦ RU,V = RU ′,V ′ ◦ (f ⊗ g). (1.3)

We show that this condition leads to a normalization of the commutativity isomorphisms
different from that(1.8)usually employed for Hecke type braidings. (Let us note that even
in the case of the quantum groupUq(sl(n)) the YB operators coming from the universal
R-matrix must be rescaled.)

In what follows we identifyK and the End(I ), whereI is the identity object in the
sense of[3]. Moreover, we use the notation End(V ) = Hom(V , V ) for the objects of the
category which sometimes are called internal (endo)morphisms (cf.[4]). By contrast, the
morphisms of the category in question will be called “categorical morphisms”. For example,
categorical morphisms of the categoryg−Mod of modules over a Lie algebrag are elements
of Hom(U, V ), U,V ∈ Ob(g − Mod), commuting with the action ofg.

Initially, categories equipped with commutativity morphisms were introduced by MacLane
[17]. However, he only considered involutary YB operators (R2 = id) called in what follows
“symmetries”. A new wave of interest in braided categories (but with noninvolutary braid-
ings) arose in connection with integrable system theory. More precisely, such categories
appeared as those of modules of Drinfeld–Jimbo quantum groups (QG)Uq(g) playing
an important role in this theory (we will denote this categoryUq(g) − Mod). Besides,
the QG have found many other interesting applications, in particular, in noncommutative
geometry.

The problem we consider in the paper is a categorical definition of the trace(1.1). What
is a reasonable generalization of the basic property of the classical trace

tr[X, Y ] = 0 ∀X, Y ∈ End(V ), (1.4)

where [X, Y ] is the commutator of two endomorphisms?1

If the braiding in a given braided category is involutary and invertible by column in the
sense of the formula(2.48)then there exists a natural generalization of the above commutator
such that relation(1.4)is still valid for this commutator and an appropriate trace. For example

1 Sometimes this property is attributed to the quantum trace (cf.[14]). Equivalent form of this property
tr(gXg−1) = tr X (g ∈ End(V ) is assumed to be invertible) appeared in[20]. However, all this is true if we
assumeX, Y andg to be categorical morphisms. But in this case the conditions above become meaningless. It is
easy to see by taking a simple objectV , since it only admits scalar categorical morphisms and these conditions
degenerate.
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it is so for a super-commutator and super-trace defined in a super-category. Other examples
can be found in[10].2

Let us note that the definition of the trace(1.1) in a category equipped with a symmetry
makes use of this symmetry and of the identification End(V ) = V ⊗ V ∗, whereV ∗ is an
object dual toV (all categories in question are assumed to be rigid, i.e., for any object of
the category its dual is also an object). Up to our knowledge for the first time such a trace
has been introduced in[6].

Once such a trace is defined one can introducea categorical dimensiondim(V ) of an
objectV by setting dim(V ) = tr(id). It is easy to see that

dim(U ⊕ V ) = dim(U) + dim(V ), dim(U ⊗ V ) = dim(U)dim(V ), (1.5)

i.e., the dimension can be considered as an additive and multiplicative (a–m) functional on
the objects of the category.

However, a direct application of the approach of[6] to the categoryUq(g) − Mod gives
“dimension” which is not an a–m functional. This is the reason why one has to introduce
a correction in the definition of “dimensions” turning them into an a–m functional. The
correction is connected to the so-called ribbon element in the corresponding QG. The image
of this element is sometimes called “twist” (cf.[20]). The categories possessing a braiding
and a twist are called ribbon. The trace in such categories is defined via some combination
of the ribbon element and another elementu due to Drinfeld (cf.[3]) and this leads to the
dimension which is an a–m functional.

Some generalization of this construction of the trace has been suggested in[2]. Suggested
in that paper is a way to define the notion of dimension in some categories without any
braiding. Such a category is introduced as that ofH -modules, whereH is a Hopf algebra.
Instead of a universal quantumR-matrix (i.e., the element giving rise to a braiding) the
authors of[2] use another element allowing to identify any objectV with its second dualV ∗∗.

In this, paper we restrict ourselves to categories equipped with braidings and suggest
another somewhat elementary way of introducing traces.

Before discussing this way let us introduce some notations and definitions.
A Yang–Baxter operator

R : V ⊗2 → V ⊗2 (1.6)

will be calleda Hecke symmetryif in addition to the Yang–Baxter equation

R12R23R12 = R23R12R23, (1.7)

it also satisfies the relation

(q id − R)(q−1 id + R) = 0, q ∈ K. (1.8)

Here the standard tensor notations have been used for the equations and operators in tensor
product of spaces.Eq. (1.7)is written inV ⊗3 and one assumes

R12 = R ⊗ id, R23 = id ⊗ R,

where id is the identity operator onV .

2 In this case the trace can be treated in terms of “R-cyclic cohomology” which can be naturally defined via the
operatorR (in the spirit of super-cyclic cohomology). However, apparently there does not exist any reasonable
similar treatment of the trace in the categories under consideration.
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The nonzero parameterq is taken to be generic, which means it is not a root of unity:
∀k ∈ N, k �= 1, qk �= 1. As a consequence none of the so-calledq-numberskq is equal to
zero

kq ≡ qk − q−k

q − q−1
�= 0 ∀k ∈ N. (1.9)

Let us assign to such a Hecke symmetry “symmetric”Λ+(V )and “skew-symmetric”Λ−(V )

algebras by

Λ+(V ) = T (V )

{Im(q id − R)} , Λ−(V ) = T (V )

{Im(q−1 id + R)} . (1.10)

HereT (V ) stands for the free tensor algebra of the spaceV and {I } denotes the ideal
generated by a subsetI in a given algebra. LetΛl±(V ) be a homogeneous component of the
algebraΛ±(V ) of the degreel. We call a Hecke symmetryevenif there exists an integerp
such that the componentΛl−(V ) is trivial at l > p and it is one-dimensional atl = p. The
integerp will be called a rank ofV and be denoted rk(V ).

In the latter 1980s one of the authors (DG) constructed examples of Hecke type braidings
which differ drastically from those related to the QG (see[10] and references therein).
Namely, it was shown that there exist a lot of Hecke symmetriesR such thatn = dim(V ) >

p = rk(V ). Here by dim(V ) we mean the usual dimension of the spaceV . Note that these
Hecke symmetries are not deformations of the usual flip and we call them nonquasiclassical.3

To the contrary, the Hecke symmetry coming from the QGUq(sl(n)) is a deformation of
the flip and we call it quasiclassical.

In this paper, we introduce a braided category generated by a vector spaceV equipped
with a Hecke symmetry such that its braidings are natural. We call it the Schur–Weyl
(SW) category and denote as SW(V). Let us remark that similar categories were considered
in some papers (cf.[1,14,15]). However, if the authors of[15] “reconstruct” an existing
category we have no category at the very beginning and should first construct it.

We construct the category directly by giving the list of objects and categorical morphisms
without using any RTT algebra habitually employed for that ([1,14]). This leads to different
defining morphisms of the category and finally, to the condition(2.33)ensuring naturality
of the braidingsRU,V . (In a separate publication one of us (RL) shows that in the class of
nonquasiclassical Hecke symmetries from[10] there exists a big subclass of those satisfying
this condition.)

Now let us describe the category under consideration. Any object of such a category is
a direct sum of simple ones and in this sense the category SW(V) is spanned by simple
(basic) objects. These basic objects are labeled by partitions (or what is the same by Young
diagrams)

λ = (λ1, λ2, . . . , λp−1), λi+1 ≤ λi, (1.11)

λi being nonnegative integers. In the sequel we will use the notationλ � k for eachλ being
a partition of the integerk that is

∑
i λi = k. The number of nonzero components of a

3 Some of them have been independently introduced in[7].
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partitionλ is called itsheightand will be denoted�(λ). For an object corresponding to a
diagramλ we introduce the notationVλ.

Let us stress that the tensor product of two basic objects is a direct sum of basic ones. This
naturally leads us to the notion of Grothendieck semiring (and hence ring) of the category
which turns out to be the same as for the categories ofsl(n)- (or Uq(sl(n)))-modules. The
only difference is that the role of the classical dimensionn = dim(V ) is played by the rank
p = rk(V ). Thus, we can consider the dimensions of objects of the category as a functional
on the Grothendieck semiring. Since it is an a–m functional we come to the problem of
describing the whole family of a–m functionals and select those related to traces.

By using the standard technique of symmetric functions (cf.[16]) we show inProposition
15that such a functionalf is determined by its values on objectsV(1k), k = 1,2, . . . , p−1,
and its value on a basic objectVλ is equal to

f (Vλ) = sλ(α1, α2, . . . , αp),

wheresλ is the Schur function (polynomial) inp variables corresponding to the partition
λ. The numbers(−αi) are the roots of the polynomial

φ(t) = tp + f1t
p−1 + · · · + fp−1t + 1, fk = f (V(1k)).

(Note, that the classical (usual) dimension is also an a–m functional. Therefore, the above
result allows one to calculate the classical dimension of spacesVλ provided that the Poincaré
seriesP−(t) (seeRemark 19) is known (for involutary symmetries such a calculation has
been done in[11]). Remark, that if a Hecke symmetryR(q) (1.6) is a deformation of an
involutary oneR(1) then the usual dimension of corresponding spacesVλ will be the same in
both cases. Indeed, being an integer number such a dimension is stable under deformation,
while the categorical dimension is a function inq which becomes integer atq = 1.)

Having classified all a–m functionals one can put the question: which a–m function-
als come from SW categories? More precisely, for which a–m functional on a given
Grothendieck semiring (with a fixedp) there exists an SW category such that the cate-
gorical dimension of its objects coincides with this functional?

Now we are going back to the problem of defining traces on objects End(U) = U ⊗ U∗
(for the sake of concreteness we consider algebras of left endomorphisms). Let us assume
that trace is defined on End(U ⊕ V ) = (U ⊕ V ) ⊗ (U∗ ⊕ V ∗) via

tr|End(U)⊕End(V ) = tr|End(U) + tr|End(V )

being extended toU ⊗ V ∗ ⊕ V ⊗ U∗ by 0. Then traces are completely defined by their
values on simple objects. IfV is such an object then the trivial component in the product
V ⊗ V ∗ is unique. So, the morphism(1.1) for suchV (being nothing but a multiple of the
projection on the trivial component) is uniquely defined up to a nontrivial factor.

As a trace we take this properly normalized morphism. Our “proper” normalization is
fixed by the requirement that the corresponding dimension should be an a–m functional
on the corresponding Grothendieck semiring. Thus, this normalization is a collective phe-
nomenon.

Remark that our method to define traces as properly normalized categorical morphisms
is valid, in principle, for any category for which the Grothendieck semiring is well defined.
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This method does not make use of either ribbon element or twist. It is sometimes useful to
employ twists in order to calculate categorical dimensions (as it is done in[14]) but it is
not reasonable to introduce it in the definition of traces. Also, it turns out that this method
is useful for studying K-theory of some algebras related to SW categories and computing
noncommutative index for them. This application will be presented elsewhere.

As for the category under consideration a computation shows that the corresponding
dimensions of basic objects are

dimq(Vλ) = sλ(q
p−1, qp−3, . . . , q−(p−1)). (1.12)

In a little bit different form the formula(1.12)was also given in[14,15]. (Also remark that
in the case of the categoryUq(sl(n)) − Mod the above formula is equivalent to that from
[9].)

However, behind this nondetailed information about the objects encoded in their dimen-
sions different and rich structures are hidden. For example, traces(1.1) in the categories in
question are defined via some matrixC entering the formula for the trace on the basic space
V and extended in a proper way onto the whole category (the extension ofC matrix to the
spaceVλ will be denotedCλ). It is worth mentioning that the matricesCλ are essentially
different in quasiclassical and nonquasiclassical cases while the categorical dimensions of
objects which are nothing but the properly normalized usual traces ofCλ depend only onλ
andp = rk(V ) via the formula(1.12).

The paper is organized as follows. InSection 2we construct all the necessary elements
of an SW category: the class of objects, categorical morphisms, the quasitensor and rigid
structure. At the end ofSection 2we discuss the role of the condition(2.33)for applications.
In Section 3we describe the full set of a–m functionals on the objects of SW(V), define the
trace in End(U)∀U ∈ Ob(SW(V)), and calculate dimq U as the value of trace on identity
morphism in End(U).

2. SW category generated by a Hecke symmetry

In this section, we describe the construction of SW category SW(V) (seeSection 1)
generated by a finite-dimensional vector spaceV equipped with a Hecke symmetry. We
supply the category with attributes of thatUq(sl(n)) − Mod. In particular, all categories
SW(V) areK-linear rigid quasitensor ones (for precise definitions see[3,18]). As was
shortly outlined inSection 1, the basic objects of SW(V) are some linear subspacesVλ of
the tensor algebraT (V ), while the categorical morphisms will be specific linear mappings
of the objects (see below). Consequently, aK-linear structure of such a category is obvious:
as the direct sum of objects we will take the usual direct sum of linear spaces and the
trivial (zero) vector space will be the null object of the category. So, we should only define
the structure of monoidal category and fix braiding isomorphisms converting the monoidal
structure into the quasitensor (or braided) one. Besides, to have a rigid category, we must
ensure that the dual spaceV ∗ of an arbitraryV ∈ Ob(SW(V)) is also an object of the
category. Now we pass to the explicit construction of the mentioned components of the
category SW(V) taking into account condition(1.3).
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2.1. Class of objects

Let us fix some finite-dimensional vector spaceV , dimV = n, and choose a basis{ei}
in this space. Consider a linear operatorR (1.6)whose action on the basis elements reads:

R(ei ⊗ ej ) = er ⊗ es R
rs
ij ,

where the summation over the repeated indices is understood. In what follows we assume
R to be a Hecke symmetry with a genericq ∈ K.

Besides, we will supposeR to be an even symmetry of a rankp ≤ n = dimV . This
means that the Poincaré seriesP−(t) related to the “skew-symmetric” algebra∧−(V ) (1.10)
is a monic polynomial ofpth degree, that is a polynomial int whose leading coefficient is
equal to 1.

Throughout the paper we will use the compact notation for the relations including matrices
and vector spaces. In such notations the indices will stand for a number of space rather than
for a particular matrix or vector component. A basis vectorei in the kth matrix space is
denoted ase〈k|, while for the basis vector of dual space we will writee|k〉. The same principle
is applied to components of arbitrary tensors.

For example, the above relation will look like4

R(e〈1| ⊗ e〈2|) := e〈1| ⊗ e〈2| R|12〉
〈12| := e〈1| ⊗ e〈2| R12.

In this notation the summation over the repeated indices is represented by an expression
which contains the same upper and lower case indiceswith properly oriented bracketsas
shown in the examples below:

e〈1| ⊗ e|1〉 :=
∑
i

ei ⊗ ei, e〈1| · T1 := e〈1| T |1〉
〈1| :=

∑
j

ejT
j
i ,

M1R12N2 :=
∑
a,b

Mi1
a R

ai2
j1b

Nb
j2

but

e|1〉 ⊗ e〈1| := ei ⊗ ej , e〈1| ⊗ e|2〉 := ei ⊗ ej , T1 · e〈1| := T i
j ek,

and so on.
Now we use the fact, that in each homogeneous componentV ⊗m of the tensor algebra

T (V ) one can realize the so-calledlocal representationof the Hecke algebraHm [5] via a
given Hecke symmetry.5

The Hecke algebraHm is generated by the unit element idH andm − 1 generatorsσk

subject to the following relations:

σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i − j | ≥ 2,

(σi − q idH )(σi + q−1 idH ) = 0, i = 1,2, . . . , m − 1.

4 The symbol := means “by definition”.
5 For the review on Hecke algebra the reader is referred to the recent work in[19].
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The local representation ofHm in V ⊗m is of the form:

σi → ρR(σi) ≡ Rii+1 = idi−1 ⊗ R ⊗ idm−i−1 ∈ End(V ⊗m). (2.1)

In the further construction of SW(V) category the central role belongs to the fact that the
Hecke algebraHm for a genericq is semisimple and can be decomposed into a direct sum
of ideals. Moreover, since the Hecke algebraHm at a genericq is isomorphic to the group
algebraK[Sm] of the mth-order permutation groupSm, its primitive idempotents gener-
ating the ideals in mentioned decomposition can be put into one-to-one correspondence
with the set of all standard Young tableaux connected with each possible partitionλ of the
integerm. Speaking more explicitly, given the algebraHm and a partitionλ � m, one can
construct some polynomialsYλ

ii in generators{σi} which turn out to be the primitive idem-
potents of Hecke algebraHm (for detailed description of such a construction see review
[19]):

idH =
∑
λ�m

dλ∑
i=1

Yλ
ii , (2.2)

Yλ
ii Y

µ
jj = δij δ

λµ Y λ
ii . (2.3)

In the above formulas the indexi runs from 1 todλ ≡ dimλ, that is to the number of all
standard Young tableaux, corresponding to the Young diagram of the partitionλ � m. Recall,
that a Young tableau is calledstandardif it is filled with successive integers from 1 tom in
such a way that the integers increase from left to right in each row and from top to bottom in
each column. The standard Young tableaux (and hence the primitive idempotentsYλ

ii ) may
be lexicographically ordered in many ways and for definiteness we fix an order in which
the first idempotentYλ

11 corresponds to the Young tableau filled by integers consequently
increasing by 1 when going down in each column. Here is an example for the Young tableau
corresponding to the partitionλ = (3,22,1):

. (2.4)

A primitive idempotent corresponding to the partitionλ = (1m) will be called the antisym-
metrizer and be denoted asA(m). There is one important circumstance about the images of
A(m) in End(V ⊗m) with respect to representation(2.1). Since the YB operatorR is taken
to be an even Hecke symmetry of rankp, the image of thepth-order antisymmetrizer

A(p) := ρR(A
(p)) : V ⊗p → V ⊗p

is one-dimensional. So, the action of this projector on an arbitrary basis element ofV ⊗p

can be presented in the form:

A(p)e〈1| ⊗ · · · ⊗ e〈p| = e〈1| ⊗ · · · ⊗ e〈p| v|1···p〉u〈1···p|, (2.5)

where components of the tensorsuandv belong to the fieldK. Due to(2.3)the normalization
ofuandv is fixed to beu〈1···p|v|1···p〉 = 1. The images of antisymmetrizersA(m) withm > p
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are trivial:

Im ρR(A
(m)) = 0 ∀m ≥ p + 1. (2.6)

In accordance with general theory each primitive idempotentYλ
ii generates a left or right

ideal of the Hecke algebraHm by means of left or right multiplications on all possible
elements ofHm. Equivalently, one can consider the left or rightregular moduleoverHm

which as a vector space isHm itself and left or right action consists in the left or right
multiplication by Hecke algebra elements. In these terms the left or right ideals generated
by primitive idempotents will be irreducible left or rightHm submodules. Let us denote
left and right submodules generated byYλ

ii asMl
λ(i) andMr

λ(i), respectively. As a direct
consequence of(2.2)one can write the following decomposition:

Hm = ⊕
λ�m

d⊕
i=1

Mr
λ(i), (2.7)

and a similar decomposition holds for left submodulesMl
λ(i).

Consider in more detail the structure of the component of(2.7)corresponding to a fixed
partitionλ � m. Let us denote

M̄λ ≡ d⊕
i=1

Mr
λ(i) ≡ d⊕

i=1
Ml

λ(i). (2.8)

The setM̄λ is a two-sided submodule inHm. Let us dwell upon the question of linear
basis inM̄λ. As is known from the theory of Hecke algebra,M̄λ is isomorphic to the
algebra Matdλ(K) of dλ × dλ matrices. Therefore in̄Mλ one can find the set ofd2

λ linear
independent quantitiesYλ

ij , which are some polynomials in generatorsσi of Hm obtained

from the primitive idempotentsYλ
ii . These quantities form a linear basis inM̄λ and obey the

algebra of matrix units6 Eij which constitute the linear basis in Matdλ(K):

Yλ
ij Y

λ
kl = δjk Y

λ
il , i, j, k, l = 1, . . . , dλ. (2.9)

Note, that for each fixedi the elementsYλ
ij 1 ≤ j ≤ dλ form a linear basis in the irreducible

submoduleMr
λ(i) ⊂ M̄λ generated by the primitive idempotentYλ

ii . And on the other hand,
for each fixedj the elementsYλ

ij 1 ≤ i ≤ dλ form a linear basis inMl
λ(j) generated byYλ

jj .

Therefore we have dimMr
λ(i) = dimMl

λ(i) = dλ.
Otherwise stated, if we arrange the elementsYλ

ij into a rectangulardλ×dλ matrix, then its
rows will represent the linear basises ofdλ right submodulesMr

λ(i), while the columns of
the matrix will represent the linear basises of left submodulesMl

λ(i). The diagonal entries
of the matrix are the primitive idempotentsYλ

ii .
An important property ofYλ

ii consists in the following fact. For any two idempotentsYλ
ii

andYλ
jj corresponding to the same partitionλ there exists an invertible element ofHm which

transforms one of these idempotents into the other one. This means that the submodules
Mr

λ(i) (or Ml
λ(i)) with differenti are isomorphic: they can be transformed into each other

6 Matrix unit Eij 1 ≤ i, j ≤ m of the matrix algebra Matm(K) is them × m matrix with the only nonzero entry
at the intersection of theith row and thej th column which is equal to 1.
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by left (respectivelyright) multiplication on some invertible element of Hecke algebraHm.
Note, that the wholeM̄λ, being a two-sided submodule inHm, is invariant with respect to
such a multiplication.

In what follows we will not distinguish the isomorphic submodules corresponding to a
partitionλand will consider them up to an isomorphism. Then each submoduleMr

λ(i) ⊂ M̄λ

generated byYλ
ii can be treated as the image of an irreducibleHm moduleMr

λ (labeled only
by the partitionλ � m) w.r.t. the followingHm module monomorphism:

Mr
λ → Mr

λ(i) ⊂ M̄λ ⊂ Hm, λ � m. (2.10)

In this sense the submodulēMλ is isomorphic (as theHm module) to a direct sum ofdλ
copies of the moduleMr

λ:

M̄λ ≡ dλ⊕
i=1

Mr
λ(i)

∼= (Mr
λ)

⊕dλ .

This formula reflects the well-known fact that the regular representation of a finite-dimen-
sional semisimple algebra decomposes into a direct sum of irreducible modules and the
multiplicity of each module is equal to its dimension.

Remark 1. It is worth mentioning that the moduleMr
λ can be mapped intōMλ in many

different ways and submodulesMr
λ(i) (generated by a fixed choice of primitive idempotents

{Yλ
ii }) are only particular cases of all possible monomorphisms. Indeed, let us take an

arbitrary set of orthonormaldλ × dλ projectorsP (i) of the rank 1:

P (i) · P (j) = δij P (i),

dλ∑
i=1

P (i) = id.

Then, as is evident from above relations and(2.9), the quantitiesXλ
ii = ∑

r,s P
(i)
rs Yλ

rs are
also a set of primitive idempotents inHm leading to another decomposition ofM̄λ into a
direct sum of right submodules which will represent other possible monomorphisms ofMr

λ

into M̄λ.

Now with each right7 submoduleMr
λ(i) ⊂ Hm we can associate a spaceVλ(i) ⊂ V ⊗m

in the following way:

Vλ(i) = Im ρR(M
r
λ(i)). (2.11)

Besides, we will deal with a spacēVλ which is the image ofM̄λ (2.8):

V̄λ = Im ρR(M̄λ) ⊂ V ⊗m. (2.12)

The spacesVλ(i) with differenti (and all otherVλ(X) ∈ V̄λ which areρR-images of other
possible monomorphisms8 of Mr

λ into M̄λ) are isomorphic as vector spaces and we will not

7 The choice ofright submodules is made since we prefer to use theleft action ofT ∈ End(V ) onV . Since an
arbitrary element ofMr

λ(i) has the formYλ
ii f (σ1, . . . , σm) (f being a polynomial in the generators ofHm), then

with such a choice the projectorρR(Y
λ
ii ) will be the last element acting onV ⊗m in formula(2.11).

8 SeeRemark 1.



D. Gurevich et al. / Journal of Geometry and Physics 44 (2002) 251–278 261

distinguish them. Instead, we will deal with a spaceVλ which (likeMr
λ) gives rise to a class

of isomorphic embeddingsVλ ↪→ V̄λ ⊂ V ⊗m and eachVλ(i) (or any otherVλ(X) as well)
is just a particular representative of this class of isomorphic spaces.

Remark 2. Formula(2.11)has a nontrivial meaning form ≥ 1, where atm = 1 the only
spaceVλ is the spaceV itself. For the future convenience we extend the formula to the case
k = 0. Namely, we will take by definitionVλ�0 = V0 ≡ K.

Now we can define the class of objects of the SW(V) category generated by a finite-dimen-
sional spaceV over a fieldK equipped with a Hecke symmetryR (1.6)–(1.8).

Definition 3. To each fixed nonnegative integerk ∈ Z+ (for k = 0 seeRemark 2) and
each possible partitionλ � k we put into correspondence a spaceVλ isomorphic to any
Vλ(i) in (2.11). The spacesVλ, λ � k, k ∈ Z+ are the basic objects of the category SW(V).
The whole class of objects of the category is formed by direct sums of a finite number of
basic objectsVλ. Thus, the spacesVλ(i) can be treated as the spaceVλ equipped with an
embedding{Vλ ↪→ V̄λ ⊂ V ⊗k}.

Remark 4. The objectsVλ should be simple objects of our category. However, some objects
Vλ of the category will be identified with each other (in particular,V(1p) andV0). So, finally
simple objects of our category will beVλ modulo the mentioned identification. Up to
this identification we will sometimes use the notation [Vλ]k for the family of embeddings
{Vλ ↪→ V̄λ ⊂ V ⊗k}.

Let us turn now to the definition of morphisms of our category.

2.2. Morphisms of the first kind and the structure of quasitensor category

Let us denote Mor(U, V ) the space of categorical morphismsU → V .

Definition 5. The morphisms of the first kind are defined as follows:

i) The set Mor(Vλ, Vλ) for any basic objectVλ contains only multiples of the identical
morphism. That is for any morphismf : Vλ → Vλ we have by definitionf = a id for
somea ∈ K.

ii) For an object embedded inV ⊗k the morphisms of the first kind are represented by a set
of linear mappings:

∀ k ∈ N, ∀ τ ∈ Hk, φk(τ ) = ρR(τ) : V ⊗k → V ⊗k. (2.13)

Thus, being restricted to the set of subspaces [Vλ]k such a mappingφk sends eachVλ(i) ∈
[Vλ]k to an isomorphic space or to zero space.9 This means that nontrivial mappings
φk at most change the embedding ofVλ into V ⊗k and therefore are multiples of iden-
tical morphism for the basic objects. Among the morphismsφk there is no one which

9 For example,ρR(σi + q−1 idH ) 1 ≤ i ≤ k − 1 sends to zero the image of the antisymmetrizerA(k).
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would sendVλ to Vµ with λ �= µ. A different kind of morphisms is considered in
Section 2.3.

Our next step consists in constructing a monoidal structure, which allows us to “multiply”
the objects of the category. This means that we want to define a covariant functor

⊗ : Ob(SW) × Ob(SW) → Ob(SW)

with some associativity morphisms (for detail see[3,18]). As such a functor we take the
usual tensor product of linear spaces with associativity morphisms to be identical. So, we
have to prove that the tensor product of any two objects of our category is also an object,
that is it can be decomposed into a direct sum of basic objects. Evidently, one only needs
to verify this property for the tensor product of basic objectsVλ.

Proposition 6. For givenλ � n andµ � m the tensor product of two basic objectsVλ and
Vµ can be expanded into a direct sum of basic objectsVν , ν � (n + m):

Vλ ⊗ Vµ = cνλµ Vν

the coefficientscνλµ being the Littlewood–Richardson ones entering the formula for product

of Schur symmetric functionssλ in p variables.10

Proof. As is clear from the definition of basic objectsVλ of our category the structure of
their tensor product is controlled by that of modulesMr

λ (2.10) and the assertion of the
proposition can be reformulated in terms of these modules.

To do so let us consider an embedding ofVλ ⊗ Vµ into V ⊗(n+m) of the form

Vλ ⊗ Vµ → Vλ(i) ⊗ Vµ(j) ⊂ V ⊗(n+m)

for some fixedi andj . As was defined in(2.11), the spaceVλ(i) is the image of the right
Hn submoduleMr

λ(i) under representationρR (2.1).
Consider an embeddingJ : Hn × Hm ↪→ Hn+m which on generators looks as follows:

∀σ ′
i ∈ Hn : J(σ ′

i ) = σi ∈ Hn+m, 1 ≤ i ≤ n − 1,

∀σ ′′
j ∈ Hm : J(σ ′′

j ) = σn+j ∈ Hn+m, 1 ≤ j ≤ m − 1. (2.14)

By constructionJ(Hn) andJ(Hm) form two mutually commuting Hecke subalgebras in
Hm+n.

Let λ � n, µ � m andM ′
λ(i), M

′′
µ(j) be two right submodules inHn andHm generated

by the primitive idempotentsYλ
ii (σ

′) andYµ
jj (σ

′′) correspondingly. The image of the tensor
productM ′

λ(i)⊗M ′′
µ(j) under(2.14)is a rightHn ×Hm moduleMr

λ(i)⊗Mr
µ(j) ⊂ Hn+m

and obviously

Vλ(i) ⊗ Vµ(j) = Im ρR(M
r
λ(i) ⊗ Mr

µ(j)). (2.15)

The rightHn+m module induced fromMr
λ(i)⊗Mr

µ(j) is reducible and can be decomposed
into a direct sum of irreducible rightHn+m submodulesMr

ν(k). This decomposition is the

10 The detailed description of Schur functions and related topics can be found in[16].
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image (under monomorphismMr
λ → Mr

λ(i)) of the following relation between irreducible
modulesMr

λ andMr
µ:

Mr
λ ⊗ Mr

µ = cνλµM
r
ν , (2.16)

where the coefficientscνλµ are equal to the multiplicity of irreducibleHn+m charactersχν in

the character induced fromχλ ×χµ. Due to(2.15)the coefficientscνλµ will also determine
the expansion of tensor product of two basic objectsVλ andVµ.

Now we use the fact that at genericq the Hecke algebraHm is isomorphic to the group
algebraK(Sm) of themth-order permutation groupSm for all m ≥ 1. Therefore, the coeffi-
cientscνλµ defining the multiplicity of irreducible moduleMr

ν in the tensor productMr
λ⊗Mr

µ

are the same for the Hecke algebra and for the algebraK(Sm). To complete the proof, note
that as is well known from the representation theory of symmetric group (see, e.g.,[16])
the corresponding multiplicities coincide with the Littlewood–Richardson coefficients in
the product of symmetric Schur functionssλ. �

Remark 7. The explicit calculation of the decomposition ofMr
λ(i) ⊗ Mr

µ(j) into a direct
sum ofHn+m submodules gives

Mr
λ(i) ⊗ Mr

µ(j) = αν
λµ(k(i, j))M

r
ν (k(i, j)), αν

λµ(k(i, j)) ∈ Z+.

But the isomorphic submodulesMr
ν(k) with differentk are images of the same moduleMr

ν

equipped with different monomorphisms (depending oni andj ) Mr
ν → M̄ν ⊂ Hn+m. The

sum
∑

k α
ν
λµ(k) does not depend oni andj and is equal tocνλµ which defines the structure

of the tensor product(2.16).

Now we should convert the monoidal category SW(V) into a quasitensor one (see[3]).
This means, that we need to define a set ofnatural commutativity(or braiding) isomor-
phisms(1.2)for any pairU,V ∈ Ob(SW(V)). To be compatible with the monoidal structure
the braiding isomorphisms must satisfy the following property for any tripleU,V,W ∈
Ob(SW(V)):

RU,V⊗W = (idV ⊗ RU,W ) ◦ (RU,V ⊗ idW),

RV⊗W,U = (RV,U ⊗ idW) ◦ (idV ⊗ RW,U ). (2.17)

Let us recall that the associativity isomorphisms are taken to be identical.
Besides, considering two possible ways of transformation ofU ⊗V ⊗W intoW ⊗V ⊗U

one comes to the following condition:

(RV,W ⊗ idU) ◦ (idV ⊗ RU,W ) ◦ (RU,V ⊗ idW)

= (idW ⊗ RU,V ) ◦ (RU,W ⊗ idV ) ◦ (idU ⊗ RV,W ). (2.18)

Let us begin with the simplest object—the spaceV . As a braiding isomorphism forV ⊗V we
take the Hecke symmetryR. Requirement(2.18)onV ⊗3 transforms into the Yang–Baxter
equation (1.7)onR which is satisfied by the definition ofR. The decomposition property
(2.17)will be used asa definitionof braiding isomorphisms for an arbitrary tensor power
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of the spaceV . That is we take:

RV,V ⊗k = RkRk−1 · · ·R1, RV ⊗k,V = R1R2 · · ·Rk. (2.19)

In the above formula a shorthand notationRi ≡ Rii+1 is used. Introducing one more notation
for the chain ofR matrices

Ri→j ≡
{

RiRi+1 · · ·Rj if j = i + n ≥ i

RiRi−1 · · ·Rj if j = i − n ≤ i

we can write a compact form for the braiding isomorphism in the general case:

RV ⊗n,V ⊗m = Rm→(m+n−1)R(m−1)→(m+n−2) · · ·R1→n

≡ Rm→1R(m+1)→2 · · ·R(n+m−1)→n. (2.20)

The two parts of this formula correspond to two possible ways of passing fromV ⊗n ⊗V ⊗m

to V ⊗m ⊗ V ⊗n. Note, that all mappings(2.20)are morphisms of the first kind.
As for the braiding isomorphisms forK ⊗ V we take it to be the usual flip:

K ⊗ V = V ⊗ K = V. (2.21)

By definition of the objects of the category SW(V) any tensor powerV ⊗m can be decom-
posed into a direct sum of basic objectsVλ, λ � m. Therefore by making use of formula
(2.20)one can define the braiding isomorphism for the tensor product of two arbitrary basic
objectsVλ ⊗ Vµ, (and, therefore, for the tensor product of any couple of objects) if we
manage to prove that isomorphism(2.20)does not “destroy” the structure of embeddings
of Vλ ⊗Vµ intoV ⊗n ⊗V ⊗m. If it is the case then we can take the restriction of(2.20)onto
V̄λ ⊗ V̄µ as the braiding morphism for the tensor product ofVλ andVµ.

That is we have to show the following. Consider two arbitrary embeddingsJi : Vλ ↪→
V ⊗n andJj : Vµ ↪→ V ⊗m. LetJi (Vλ) = Vλ(i) andJj (Vµ) = Vµ(j). Let us recall that
Vλ(i) is defined by(2.11). We want to show that under isomorphism(2.20)one gets:

Vλ(i) ⊗ Vµ(j) → Rλµ(Vλ(i) ⊗ Vµ(j)),

whereRλµ is an invertible operator from End(V̄λ ⊗ V̄µ) (the spacēVλ is defined in(2.12))
whichdoes notdepend oni andj .

Proposition 8. For two given partitionsλ � n, µ � m and two arbitrary integers1 ≤
i ≤ dλ and1 ≤ j ≤ dµ consider the corresponding spacesVλ(i) andVµ(j) as defined in
(2.11). Then under isomorphism(2.20)one has

Vλ(i) ⊗ Vµ(j) → Rλµ(Vλ(i) ⊗ Vµ(j)), (2.22)

where the operatorRλµ is defined onV̄λ ⊗ V̄µ by means of the following formula:

Rλµ = (ρR(Y
µ) ⊗ ρR(Y

λ)) · RV ⊗n,V ⊗m. (2.23)

HereRV ⊗n,V ⊗m is defined by(2.20)and

Y
λ ≡

dλ∑
i=1

Yλ
ii

is a central idempotent of the corresponding Hecke algebra.
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Proof. The proof is based on the embedding ofHn×Hm intoHn+m introduced inProposition
6. In accordance with(2.14) and (2.15)we can write

Vλ(i) ⊗ Vµ(j) = Im{ρR(Y
λ
ii ) ⊗ ρR(Y

µ
jj )}.

Considered on the arbitrary basis element of the spaceV ⊗n ⊗ V ⊗m the right-hand side of
the above formula reads:

e〈1| ⊗ · · · ⊗ e〈n+m| → e〈1| ⊗ · · · ⊗ e〈n+m|{Yλii ⊗ Yµjj }|1···n+m〉
〈1···n+m|, (2.24)

where the matricesYλii = ρR(Y
λ
ii ) andYµjj = ρR(Y

µ
jj ) are some polynomials inR1 · · ·Rn−1

andRn+1 · · ·Rn+m−1, respectively:

Yλii = Yλii (R1, . . . , Rn−1), Yµjj = Yµjj (Rn+1, . . . , Rn+m−1).

Applying the braiding isomorphism(2.20)to V ⊗n ⊗ V ⊗m leads to the following result for
formula(2.24):

e〈1| ⊗ · · · ⊗ e〈n+m| → e〈1| ⊗ · · · ⊗ e〈n+m|{RV ⊗n,V ⊗m · (Yλii ⊗ Yµjj )},
where the symbol· stands for the matrix multiplication.

Now one should take into account the following relations which are direct consequence
of (2.20)and Yang–Baxterequation (1.7):

RV ⊗n,V ⊗m · Ri = Ri+m · RV ⊗n,V ⊗m, 1 ≤ i ≤ n − 1,

RV ⊗n,V ⊗m · Rj = Rj−n · RV ⊗n,V ⊗m, n + 1 ≤ j ≤ n + m − 1.

Using these relations one gets:

RV ⊗n,V ⊗m · Y λ
ii (R1 · · ·Rn−1)Y

µ
jj (Rn+1 · · ·Rn+m−1)

= Y µ
jj (R1 · · ·Rm−1) ⊗ Y λ

ii (Rm+1 · · ·Rm+n−1) · RV ⊗n,V ⊗m.

This formula proves(2.22). In order to find the form ofRλµ we observe thatYλ = ∑
i Y

λ
ii

arecentralelements ofHn(λ � n) and besidesYλ
ii ≡ Yλ

ii Y
λ ∀i, j . Therefore

(Y µ
jj ⊗ Y λ

ii ) · RV ⊗n,V ⊗m ≡ Y µ
jj ⊗ Y λ

ii · (ρR(Y
µ) ⊗ ρR(Y

λ) · RV ⊗n,V ⊗m),

where ρR(Y
λ) is the projector ontoV̄λ ⊂ V ⊗(n+m). Thus, we come to form(2.23)

of Rλµ. �

So, the operatorRλµ = ρR(Y
µ) ⊗ ρR(Y

λ)RV ⊗n,V ⊗m does not depend on a concrete
embedding ofVλ ⊗ Vµ ∈ Ob(SW(V)) into V n ⊗ Vm (i.e., it does not depend on indices
i, j ) and represents a braiding isomorphism forVλ ⊗ Vµ.

2.3. Morphisms of the second kind and reduction procedure

As was mentioned above (see(2.6)) the image of the antisymmetrizerAm with m > p

is identical zero inV ⊗m. It can be shown that the same is true for any ImρR(M
r
λ) in case
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if the height�(λ) > p. This means that the basic objects of our categoryVλ are labeled by
partitions with restricted height:Vλ �≡ 0 ⇔ �(λ) ≤ p.

However, there is another consequence of(2.5) and (2.6)which concerns the objects
labeled by partitions with the height equal top. Consider a partitionλ � (p +m) for some
nonnegative integerm such that�(λ) = p. Letµ denote a partition ofm which is obtained
from λ by striking the first column out of the Young diagram corresponding toλ. The parts
of λ andµ are connected by the relationµi = λi − 1 ∀λi �= 0. As immediately follows
from Proposition 6and from the above remark about the maximal height ofλ the following
decomposition takes place:

Vλ
∼= V(1p) ⊗ Vµ, (2.25)

whereV(1p) stands for the one-dimensional space labeled by one-column diagram withp

boxes:λ = (1p).
Isomorphisms(2.25)allow us to define the so-calledreduction procedureand to introduce

morphisms of the second kind in our category, namely, those identifyingVλ andVµ. For
this purpose consider a mappingψ sending the one-dimensional spaceV(1p) into the field
K. Evidently, one only needs to fix the action of the mappingψ on a basis vector of
V(1p) ∼= Im ρR(A

(p)). In the general form such a mapping looks like

ψ(e〈1| ⊗ · · · ⊗ e〈p|v|1···p〉) = 1 ∈ K. (2.26)

The choice of 1 in the above formula does not restrict generality of our consideration.
Let us suppose thatψ ∈ Mor(V(1p),K). Then taking into account(1.3)and the fact that

the identity operator is a categorical morphism we conclude that the following diagrams
must be commutative:

.

Consider a particular case of these diagrams by puttingVµ = V (if they are commutative
in this case the same will be true for anyµ). Then by passing to the basis we have

V(1p) ⊗ V : e〈1| ⊗ · · · ⊗ e〈p| ⊗ e〈p+1|v|1···p〉ψ⊗id→ 1 ⊗ e〈p+1| = e〈p+1| ⊗ 1. (2.27)

According to another way in the left diagram we should first apply the braiding morphism
RV(1p),V . Thus, we have

RV(1p),V : e〈1| ⊗ · · · ⊗ e〈p| ⊗ e〈p+1|v|1···p〉

→ e〈1| ⊗ · · · ⊗ e〈p| ⊗ e〈p+1|R1 · · ·Rp v|1···p〉.

In order to simplify this expression we need the following useful relations (see[13]):

R1 · · ·RpA
(p) = (−1)p−1qpqA

(2,p+1)A(p),

Rp · · ·R1A
(2,p+1) = (−1)p−1qpqA

(p)A(2,p+1),

A(p)A(2,p+1)A(p) = p−2
q A

(p) ⊗ idp+1. (2.28)
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In these formulas the antisymmetrizerA(2,p+1) has the same form asA(p) but it depends
onR2, . . . , Rp instead ofR1, . . . , Rp−1.

Now in virtue of(2.28)we obtain:

R1 · · ·Rpv
|1···p〉 = v|2···p+1〉N |1〉

〈p+1|, (2.29)

where the matrixN is defined as follows:

Ni
j ≡ (−1)p−1qpqua2···apj v

ia2···ap or N
|1〉
〈1′|=(−1)p−1qpqu〈2···p1′|v|12···p〉. (2.30)

Therefore the composition(id ⊗ �) ◦ RV(1p),V gives the following result:

e〈1| ⊗ · · · ⊗ e〈p| ⊗ e〈p+1|v|1···p〉

→ e〈1| ⊗ · · · ⊗ e〈p| ⊗ e〈p+1|v|2···p+1〉N |1〉
〈p+1| → e〈1|N |1〉

〈p+1| ⊗ 1,

which obviously differs from(2.27). These results can be made compatible iffN is a scalar
matrix (i.e., it is proportional to then× n unit matrixI ). If it is so, then by multiplying the
braidingR by an appropriate factor we can achieve the commutativity of the left diagram
above. Indeed, if we replace the braidingR by aR, a ∈ K, the factorap appears in the
right-hand side of(2.29). Choosing properly the factora we can obtainapN = I .

Applying the same procedure for the spaceV ⊗V(1p) (the right diagram above) we find:

e〈1| ⊗ e〈2| ⊗ · · · ⊗ e〈p+1|v|2···p+1〉 → 1 ⊗ e〈p+1|M
|p+1〉
〈1| ,

where11

Mi
j ≡ (−1)p−1qpquja2···apv

a2···api or M
|1′〉
〈1| ≡ (−1)p−1qpqu〈12···p|v|2···p1′〉.

(2.30′)

For the same reason we assume the matrixM to be scalar. Then the right diagram can
also be made commutative by a proper rescaling ofR. However, if we want to obtain the
unit matrix instead of the matricesN andM simultaneously we have to impose one more
condition:M = N .

Therefore from now on we will suppose the Hecke symmetryR to satisfy the relation

M = N = aI, a ∈ K
×. (2.31)

Thus, the mappingψ becomes a morphism of the category SW(V) after a proper renormal-
ization of the braiding morphisms.

This normalization factor is easy to find. Indeed, using relations(2.28) (valid for any
Hecke symmetry of the rankp) we find

M · N = q2I. (2.32)

So, if relation(2.31)is satisfied then by virtue of(2.32)we havea = ±q and hence

N = M = ±qI. (2.33)

11 Note that the matricesN andM differ by a factor from those considered in[10].
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Therefore by assumingψ to be a morphism and the braiding to be natural we should pass
from the initial Hecke symmetryR to the braiding

R̄ = (±q)−1/pR. (2.34)

On the higher tensor powers this renormalization gives rise to a renormalized braiding as
well

R̄V ⊗n,V ⊗m = (±q)−mn/pRV ⊗n,V ⊗m. (2.35)

The mappingψ (as well as its inverseψ−1) will be called a morphism of the second kind.
Now let us compare our approach to introducing categorical morphisms with that making

use of the RTT algebra. Recall that this algebra denotedT is generated byn2 elementsT i
j

subject to the relations[8]:

R12T1T2 = T1T2R12. (2.36)

It becomes a bialgebra being equipped with a coproduct∆ and a counitε as follows:

∆(T i
j ) = T i

k ⊗ T k
j , ε(T i

j ) = δij .

Define the right comodule structureδr : V → V ⊗ T on the spaceV as follows:

δr (v) = ek ⊗ T k
i v

i ∀ v = viei ∈ V.

Such a coaction is extended toV ⊗k in the obvious way:

δr : V ⊗k → V ⊗k ⊗ T, e〈1| ⊗ · · · ⊗ e〈k| → e〈1| ⊗ · · · ⊗ e〈k| ⊗ T1 · · · Tk, (2.37)

and all the comodule properties are easily verified. Then eachVλ(i)λ � k turns out to be an
invariant subcomodule inV ⊗k since the coactionδr commute with the action ofρR(M

r
λ(i))

onV ⊗k:

∀k, ∀λ � k, ρR(M
r
λ)T1T1 · · · Tk = T1T1 · · · TkρR(M

r
λ).

This equation is a direct consequence of defining relations(2.36)and explicit formula for
primitive idempotents ofHk which expresses eachYλ

ii as a polynomial inσ1, σ2, . . . , σk−1.
Thus, any object of the category SW(V) can be equipped with aT-coaction. This structure

is often used in order to define categorical morphisms: one says that a mapU → V is a
morphism if it commutes with this coaction. Let us analyze what it entails being applied to
ψ . For this purpose considera quantum determinantdetq T of bialgebra(2.36)defined as
follows [8]:

detq T ≡ u〈12···p|T1T2 · · · Tpv
|12···p〉. (2.38)

The commutation relations of detq T with generators of(2.36)read (cf.[10]):

detq T · T = (N−1TN) · detq T ⇔ detq T · (NT) = (TN) · detq T (2.39)

or due to(2.32)

detq T · T = (MTM−1) · detq T ⇔ detq T · (TM) = (MT) · detq T .
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If we want the mappingψ (2.26) to commute with the comodule structure we have to
introduce one more condition:

detq T = 1. (2.40)

But such a relation is compatible with the algebraic structure only iff detq T is a central
element of algebra(2.36). By virtue of (2.39)this means that the matrixN (and henceM)
must be scalar.

Formally, the condition “N andM are scalar” is weaker than “N andM are scalar and
equal to each other”. It is not clear whether there exist Hecke symmetries such that the
matricesN andM are scalar but not equal to each other. Nevertheless, the family of even
Hecke symmetries satisfying(2.33) is sufficiently large. It will be shown by one of the
authors (RL) in a separate paper.

Let us also remark that for the quasiclassical Hecke symmetries coming from the universal
R matrix of QGUq(sl(n)) condition(2.31)holds true. The quantum determinant detq T and
the unit element 1 generate the center of(2.36) [8]. But in general (even in the quasiclassical
case) detq T is not central.

2.4. The structure of rigid category

To convert a (quasi)tensor categoryC into arigid one we must specify the following data
[3]:

a. A mapping∗ : Ob(C) → Ob(C) which for anyU ∈ Ob(C) put into correspondence its
left dualU∗

b. For any pair of dual objectsU andU∗ there exist evaluationevU and coevaluationπU

morphisms ofC

πU : K → U ⊗ U∗, evU : U∗ ⊗ U → K,

such that the following diagrams are commutative:

. (2.41)

Let us begin with the caseU = V . By our construction of the morphismψ it is evident that
the dual spaceV ∗ is nothing butΛp−1(V ). So, in order to satisfy(2.41)we should only fix
a convenient basis convertingΛp−1(V ) into a left dual space.

Definition 9. The spaceΛp−1(V ) equipped with the basis

ei = ea2 ⊗ · · · ⊗ eapv
ia2···ap or e|1〉 = e〈2| ⊗ · · · ⊗ e〈p|v|12···p〉 (2.42)

will be called a left dual space to the spaceV . The morphismsevV andπV are defined as
follows (on basis vectors):

evV : ei ⊗ ej → δii1, πV : 1 → ei ⊗ ei . (2.43)

In order to justify this definition we have to show the following.
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Proposition 10. Mappings(2.43)are morphisms of the SW(V) category and they satisfy
property(2.41).

Proof. The fact thatπV is a morphism is evident since

πV = ψ−1.

To show thatevV is a morphism let us consider the mapping

ϕ = (−1)p−1pqψ ◦Ap : V ⊗p → K.

It is a morphism by construction. In a basis form we get

ϕ : ei1 ⊗ · · · ⊗ eip → (−1)p−1pqui1···ip .

Applying this morphism to the element

ei ⊗ ej = via2···apea2 ⊗ · · · ⊗ eap ⊗ ej ,

we get

ϕ(ei ⊗ ei) = (−1)p−1pqv
ia2···apua2···apj = q−1Ni

j = ±δij .

Thus, the mappingevV is nothing but the morphism±ϕ restricted onΛp−1(V ) ⊗ V .
Diagrams(2.41)are obviously commutative. �

Let us define now left duals to other simple objects of our category. First, introduce a
dual object toV ⊗m by putting(V ⊗m)∗ = (V ∗)⊗m.

Proposition 11. The space(V ∗)⊗m is dual to the space(V ⊗m) being equipped with the
mappings

evU : V ∗⊗m ⊗ V ⊗m → K, πU : K → V ⊗m ⊗ V ∗⊗m

,

which are defined to be:

evU : e|m〉 ⊗ · · · ⊗ e|1〉 ⊗ e〈1| ⊗ · · · e〈m| → δ
|1〉
〈1| · · · δ|m〉

〈m|,

πU : 1K → e〈1| ⊗ · · · ⊗ e〈m| ⊗ e|m〉 ⊗ · · · ⊗ e|1〉. (2.44)

Proof. It is obvious. �

Now we are ready to define the dualV ∗
λ and corresponding morphismsπVλ andevVλ for

arbitrary basic objectVλ of the category SW(V).
Fix a basic objectVλ, λ � m, and consider its particular embedding intoV ⊗m in the form

(2.11):

Vλ(i) = Im ρR(Y
λ
ii ).

This space is spanned by the following vectors

e〈1| ⊗ · · · ⊗ e〈m| · (Y λ
ii )

|1···m〉
〈1... m|,

whereY λ
ii is a matrix ofYλ

ii in the representationρR.
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Let us define a spaceV ∗
λ (i) ⊂ V ∗⊗m

as a linear span of the form:

V ∗
λ (i) = {w∗ : w∗ = w〈1···m|(Y λ

ii ) · e|m〉 ⊗ · · · ⊗ e|1〉}, (2.45)

wherew〈1···m| is an arbitrary tensor with components fromK. It is important, that the order
of spaces in this formula is reversed comparing with the preceding relation while the matrix
Y λ

ii is the same.
Finally, we have the following proposition.

Proposition 12. The spaceV ∗
λ being equipped with the morphismsevVλ andπVλ of the

form

evVλ : V ∗
λ ⊗ Vλ → Y λ

ii , πVλ : 1K → e〈1| ⊗ · · · e〈m| ⊗ Y λ
ii · e|m〉 ⊗ · · · ⊗ e|1〉

(2.46)

becomes left dual to the spaceVλ (provided thatVλ is realized asVλ(i)).

Let us note that in fact the spaceV ∗
λ is nothing but

Vµ, µ = (λ1, λ1 − λp−1, λ1 − λp−2, . . . , λ1 − λ2)

equipped with an embedding in the spaceV ∗⊗m
. This shows that we do not need to construct

left dual to the spaceV ∗
λ because it is just the objectVλ.

Nevertheless, the problem of an explicit pairing

Vλ ⊗ V ∗
λ → K

convertingV ∗
λ into the right dual toVλ (andVλ in the left dual toV ∗

λ ) is very important. In
order to describe this pairing in a particular caseVλ = V let us calculate the braiding ofV
andΛp−1(V ) expressed via the basis{ei}. Note, that we use the renormalized braidingR̄

(2.34).

Proposition 13. We have

R̄V,V ∗ : ei ⊗ ej → er ⊗ esQ̄
js
ir , (2.47)

where in the given basis{ei} the operatorQ̄ satisfies the relation:

R̄ia
jbQ̄

bk
al = δil δ

k
j ⇔ Q̄ia

jbR̄
bk
al = δil δ

k
j . (2.48)

Note, that if suchQ̄ exists then the corresponding braidingR̄ is usually calledinvertible by
column.

Proof. According to definition(2.42) for ei and(2.35) for the renormalized braiding we
get (omitting the obvious signs of tensor product):

ei ⊗ ej = eiea2 · · · eapvja2···ap

R̄
V,V⊗(p−1)→ es1 · · · esp (±q)(1−p)/p(Rp−1 · · ·R1)

s1···sp
ia2···apv

ja2···ap .
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Now from(2.28)it is easy to find

(±q)(1−p)/p(Rp−1 · · ·R1)
s1···sp
ia2···apv

ja2···ap = Q̄
jsp
ir vrs1···sp−1.

Substituting this into the previous relation and applying again the definition(2.42)of the
dual basis we find result(2.47). �

Now we introduce a pairing betweenV andV ∗ by putting

evV = evV ◦ RV,V ∗ : V ⊗ V ∗ → K.

It is this operator which plays the central role in the next section where a categorical trace
in the space End(V ) will be introduced.

Completing this Section let us discuss a meaning of the property that the morphism
ψ is coordinated with the braidings in the sense of(1.3). Let V be the basic object
of the category SW(V). Assuming the category to be rigid we can identify End(V ) ∼=
V ⊗ Λ(p−1)(V ) (we consider the left morphisms space). Then the usual operator product
µ : End(V )⊗2 → End(V ) is nothing but the pairingΛ(p−1)(V ) ⊗ V → K. Moreover, the
property

Rµ12 = µ23R12R23, Rµ23 = µ12R23R12, R = REnd(V ),End(V ),

which appears in numerous applications is satisfied. Let us note that these relations are not
invariant w.r.t. a rescalingR → aR, a �= 0 while the condition(2.40)is.

Also remark that often a problem arises to check that a given mapρ : U → V,U, V ∈
Ob(C) is a categorical morphism. Then by putting in(1.3)f = ρ, g = id or f = ρ, g = ρ

we get necessary conditions very useful in practice.

3. Additive–multiplicative functional and dimension

In this section we find all possible additive and multiplicative (a–m) functionals on objects
of SW category SW(V) and suggest a definition of the trace in End(V ) as morphism(1.1)in
the category such that the corresponding dimension is an a–m functional. As was pointed out
in Section 1, the requirement that the trace should be a morphism in general is not a trivial
one. In particular, this requirement gives rise to the notion ofquantum tracein the category
of finite-dimensional modules over a special class of quasitriangular Hopf algebras—the
so-called ribbon Hopf algebras. In our approach the morphism property of trace can be
obtained without any additional Hopf structure.

Let us recall that a mappingf : Ob(SW(V)) → K will be calledan additive–multipli-
cative functional(a–m functional) if it possesses the following property:

∀U,V ∈ Ob(SW(V)) : f (U ⊕ V ) = f (U) + f (V ), f (U ⊗ V ) = f (U)f (V ).

(3.1)

Remark 14. Introducing the Grothendieck semiring of the category SW(V) and making
use of the fact that our category is semisimple (i.e., any of its object can be decomposed
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into a direct sum of simple ones) we conclude that each a–m functional on the category is
in fact defined on the Grothendieck semiring.

The fact that we are working with a Hecke symmetry of the rankp leads to an important
consequence for the set of a–m functionals. Namely we will show that the value of any
a–m functionalf on a basic objectVλ (and, hence, on an arbitrary object of SW(V)) is
completely determined by(p − 1) numbers12 f (V(1k)) k = 1, . . . , p − 1.

Proposition 15. Given an a–m functional f, construct a pth-order polynomial in a formal
variable t of the form:

φ(t) = tp + f1t
p−1 · · · + fp−1t + 1, fk ≡ f (V(1k)), k = 1, . . . , p − 1.

(3.2)

Let numbers(−αi) ∈ K be the roots ofφ(t), that isφ(−αi) = 0 i = 1, . . . , p. Then for
any basic objectVλ of SW(V) the following relation holds:

f (Vλ) = sλ(α1, α2, . . . , αp), (3.3)

wheresλ(x1, . . . , xp) is the symmetric Schur function in p variables13 corresponding to the
partition λ.

Proof. First of all let us prove that the numbersfk = f (V(1k))do satisfy(3.3). In accordance
with the definition ofαi we can write

φ(t) = (t + α1)(t + α2) · · · (t + αp).

Therefore, as immediately follows from this relation, the coefficientfk is thekth elementary
symmetric functionek in variablesαi [16]:

fk =
∑

i1<i2<···<ik

αi1αi2 · · ·αik = ek(α1, . . . , αk).

But sinces(1k) = ek we conclude that the assertion of the proposition is valid forfk.
The fact that the quantitiessλ(α1, α2, . . . , αp) can be considered as values of an a–m func-

tional follows immediately from the properties of Schur functions and fromProposition 6.
In order to prove(3.3)we should only check that once the quantitiesf (Vλ), λ = (1k), are
given then all quantitiesf (Vµ) for all other partitions are uniquely defined. This can be
shown by induction in couples(m, k), wherem is the number of columns inλ andk is the
number of boxes in the last column. Namely, using the implication

f (Vλ ⊗ Vµ) = f (Vλ)f (Vµ) = cνλµf (Vν) ⇒ sλsµ = cνλµf (Vν),

we can find the quantityf (Vλ) for λ corresponding to a given couple(m, k) provided that
all f (Vµ), whereµ corresponds to the couples(l, r) such thatl < m or l = m, r < k are
already known. �
12 Due to(2.21)and reduction morphismψ (2.26)we have to put for any a–m functionalf (K) = f (V(1p)) = 1.
13 Let us recall, that due to(2.21)all the partitionsλ labeling the objects of our category has the height not greater

thanp therefore the right-hand side ofEq. (3.3)is correctly defined for any object of SW(V).
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In what follows we will use this proposition for a proper definition of the categorical trace.
It will be defined as such a morphism(1.1) that the corresponding dimension becomes an
a–m functional. By virtue of the above proposition we should only find the quantities(3.3)
for λ = (1k).

Describe now this construction in detail. Begin with the basic objectV . Since the space
V is finite-dimensional, we can identify End(V ) andV ⊗ V ∗ in the usual way:

∀F ∈ End(V ) ↔ ei ⊗ F i
j e

j ∈ V ⊗ V ∗,

F i
j being a matrix ofF in the basis{ei}. Define the mapping trV : End(V ) → K as the

following composition of morphisms:

trV = αevV ◦ R̄V,V ∗ . (3.4)

Note, that trV is defined by the above relation up to an arbitrary nonzero factorα which
will be specified later from the requirement that the corresponding dimension would be an
a–m functional. In the fixed basis{ei} of V one can write this mapping in an explicit form.
TakingR̄V,V ∗ from Proposition 13we find:

∀F ∈ End(V ) : ei → ejF
j
i ⇒ trV (F) = α Tr(F · C), (3.5)

where the symbol Tr means the usual matrix trace and then × n matrixC is defined to be

Ci
j :=

n∑
a=1

Qia
ja, Q ≡ (±q)−1/pQ̄.

Here the matrixQ̄ is taken from(2.48)and the factor(±q)1/p is included intoα.
The matrixC has the following useful properties[12]:

R12C1C2 = C1C2R12, (3.6)

C
|1〉
〈1′| = pq

qp
u〈1′23···p|v|123···p〉 ⇒ Tr C = pq

qp
, (3.7)

Tr(2)R12C2 = id(1). (3.8)

The trace trV ⊗k in End(V ⊗k) is defined (also up to an arbitrary factorβ(k)) as the mapping
V ⊗k ⊗ V ∗⊗k → K:

trV ⊗k = β(k) tr(1)V ◦ tr(2)V · · · ◦ tr(k)V , (3.9)

where tr(i)V : V ⊗i ⊗ V ∗⊗i → V ⊗(i−1) ⊗ V ∗⊗(i−1) reads

tr(i)V = id⊗(i−1) ⊗ α−1 trV ⊗ id⊗(i−1).

For any basic objectVλ λ � m one can find the explicit form of the trace in End(Vλ) ∼=
End(Vλ(i)) using definitions(2.11) and (2.45)and property(3.6):

∀F ∈ End(Vλ(i)) : trVλ(F) = β(m) Tr(1···m)(F · Cλ), (3.10)
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where Tr(1···m) is the the usual trace in the matrix space Mat⊗m
n×n(K) and the matrixCλ is of

the form:

Cλ = Y λ
ii (R1 · · ·Rm−1)C1C2 · · ·Cm. (3.11)

Remark 16. At the first sight the trace trVλ depends on a concrete embeddingVλ → Vλ(i).
But in fact our definition is invariant w.r.t. different embeddings ofVλ into V ⊗m. Indeed,
as was already noticed in the previous section, any primitive idempotentsYλ

ii of the Hecke
algebraHm can be transformed into another idempotentYλ

jj (with the sameλ) with the help
of an invertible elementX(i, j |λ) from Hm. The imageX = ρR(X(i, j |λ)) of the element
X(i, j |λ) under the representationρR (2.1)represents a first kind morphism of SW(V) and
according to(3.6)the string of matricesC1 · · ·Cm in (3.11)commute withX. Therefore trace
(3.10)is actually independent of the indexi labeling the concrete embeddingVλ → Vλ(i).

Find now the conditions on arbitrary factorsα and β(k) which would guarantee the
dimensions defined via the above trace to be an a–m functional.

Let us note that although the dimension defined by the usual trace is an a–m functional
such a trace is not a morphism of the category if the braiding differs from the flip.14 This
is the reason why we should modify the usual trace by means of the matrixC (and all its
extensionsCλ) multiplied by a proper factorα (3.5).

The fact that the matrixC extends to End(V ⊗m) in a “group like” way

C → C⊗m

ensures the conservation of the additive and multiplicative structure of the functional(3.9)
restricted on the identity operator (what is just categorical dimension) iff we put

β(k) = αk. (3.12)

So, if we want the trace trVλ to be a morphism and giving rise to an a–m functional we have
the only free parameterα at our disposal. This parameter (a normalization of the trace) can
be found from the following condition dimq V(1p) = 1 (see footnote 12). The following
lemma plays the key role in finding such a normalization (the relation presented below was
found in another but equivalent form in[14]).

Lemma 17. For any Hecke symmetry of the rank p the following relation holds:

Tr(1···k)(A(k)C1 · · ·Ck) = q−pk pq !

kq !(p − k)q !
, 1 ≤ k ≤ p, (3.13)

where the matrixA(k) is the image of kth-order antisymmetrizerA(k) under the represen-
tationρR (2.1).

Proof. For an arbitrarym ∈ Z introduce the auxiliary notation

14 For example, if our category SW(V) is supplied with the comodule structure over the RTT Hopf algebra(2.36)
then the usual trace is not compatible with the comodule structure.
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Ri (m) := Ri − qm

mq

,

wheremq is defined in(1.9). With this notation the matrixA(m)(R1, . . . , Rm−1) can be
presented in the form:

A(m) = (−1)m−1

mq

A(m−1)Rm−1(m − 1)Rm−2(m − 2) · · ·R1(1), A(1) := id.

For the sake of shortness we introduce the notation:

Trq(1···k)X := Tr(1···k)(XC1 · · ·Ck).

Now we prove(3.13)by induction. Fork = 1 we get with the help of(3.7)

Tr C = q−ppq,

which gives the base of induction. Suppose that the assertion of the lemma is valid up to
some integerk < p. Then using the simple relations

Trq(k+1)Rk(k) = −q−p (p − k)q

kq
id(k),

A(k)Rk−1(k − 1) · · ·R1(1) = (−1)k−1kqA
(k),

one can complete the induction

Trq(1···k+1)A
(k+1) = (−1)k

(k + 1)q
Trq(1... k+1)(A

(k)Rk(k) · · ·R1(1))

= (−1)k

(k + 1)q
Trq(1···k)(A(k)[Trq(k+1)Rk(k)]Rk−1(k − 1) · · ·R1(1))

= (−1)k+1q−p (p − k)q

kq(k + 1)q
Trq(1···k)(A(k)Rk−1(k − 1) · · ·R1(1))

= q−p (p − k)q

(k + 1)q
Trq(1···k)A(k) = q−p(k+1)pq !

(k + 1)q !(p − k − 1)q !
. �

This lemma implies that if we takeα = qp (which is equivalent to simple renormalization
C → qpC in all formulas for the trace) then we get dimq V(1p) = 1 and the categorical
dimension related to the trace becomes an a–m functional well defined on objects of our
category and hence on the corresponding Grothendieck semiring.

Let us summarize the above consideration in the following proposition.

Proposition 18. For any basic objectVλ, λ � m, of the category SW(V) define the trace
trVλ as a morphismEnd(Vλ) → K of the form:

∀F ∈ End(Vλ) : trVλ(F) = qpmTr(1···m)(F · Cλ).
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Then such a trace is a morphism in the category SW(V) and the corresponding categorical
dimension is an a–m functional. The dimension of any basic objectVλ is as follows:

dimqVλ := trVλ(id) = sλ(q
p−1, qp−3, . . . , q1−p), (3.14)

sλ being the Schur symmetric function(polynomial) in p variables.

Proof. To prove(3.14)we useProposition 15andLemma 17. By virtue of the trace defi-
nition one gets from(3.13):

dimqV(1k) = qpk Trq(1···k)A(k) = pq !

kq !(p − k)q !
≡ fk.

Therefore due toProposition 15we should find the roots of the polynomialφ(t) (3.2)with
the abovefk. But as is well known the generating function for suchfk (which areq-binomial
coefficients) is as follows:

Eq(t) :=
p−1∏
k=0

(q2k+1−p + t) ≡ φ(t).

Therefore the roots of the polynomialφ(t) with the coefficientsfk = dimqV(1k) are the
numbers(−q2k+1−p), k = 0,1, . . . , p − 1 and result(3.14)follows now fromProposition
15. �

Remark 19. We want to complete the paper with the following observation concerning the
Koszul complexes considered in[10]. As was shown there, the Poincaré seriesP±(t)

P±(t) :=
∑
l

dimΛl
±t l

of “symmetric” and “skewsymmetric” algebrasΛ±(V ) (see(1.10)) satisfy the relation

P+(t)P (−t) = 1. (3.15)

We would like to point out that if we replace the usual dimensions in formula(3.15)by
categorical ones relation(3.15)will be still valid. Moreover, the same is true if we replace
the dimensions by the values of any a–m functional. It is not surprising since this fact reflects
the well known relation between elementary and complete symmetric functions. And any
a–m functional is nothing but a specialization of symmetric functions.

Thus, without constructing any deformed Koszul complex we can obtain some numerical
characteristics of quantum objects merely replacing the usual dimensions by theirq-analogs
(if we disregard the property of the quantum differential to be a morphism of the category).
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